SMC气缸*现货,SMC汽缸,SMC气缸/39529839/39529830:单荣兵
气阀的结构:压缩机的气阀有各式各样的结构,按气体流动的方式可分为顺流式和逆流式,见图10-8和图10-9。
气阀是压缩机的主要部件,在压缩机运行过程中,气阀起着分配气体的作用。气阀的结构和的好坏对压缩机的好坏与有直接的影响。因此,要求气阀的结构合理,弹性大小合适,使气阀在相应压力和转速下能及时关闭和打开,尽量减小气阀开闭时的阻力,以减少压缩机的功耗。
(5)压缩机的工作过程:①吸气过程:从图10-10我们看到,活塞从上静止点D向右运动时,气缸容积不断扩大,气缸内压力降低,进气阀l打开,气体由气缸上的低压进气口吸进来,经低压缓冲腔缓冲下,再经过低压孔进入气缸盖与阀门构成的小低压腔内,zui后由进气阀进入气缸内,当活塞运行到下静止位置“A”时就完成了吸气过程。②压缩过程:压缩机从下静止点“A”向左运动,气缸容积变小压力增大,进气阀关闭,当活塞继续向左运动,气体继续被压缩,当压力达到定值时,出气阀即高阀“2”被打开,被压缩的高压气体从高压阀门排出。当活塞运行到上静止点时,压缩过SMC气缸,smc汽缸,日本SMC气缸
程结束。压缩机完成气体压缩输送工作。之后,压缩机又开始吸气过程。
除上述介绍滑管式全封闭压缩机外,还有曲柄连杆式全封闭式压缩机,它们的结构基本相同,只是在结构上以连杆代替滑块和滑管,其它另件大同小异。连杆式全封闭压缩机的结构较复杂,但输出功率大,在大型开启式压缩机中被大量采用。
SMC气缸*现货,SMC汽缸,SMC气缸/39529839/39529830:单荣兵
可以在活塞的两个面上施力以控制其主动运动可以双向作用的气缸叫双作用的。
典型的如蒸汽火车头的驱动气缸,在两个方向上都可以进气对外输出力。
现代的内燃机的气缸都是单作用的,因为只有活塞顶部安装了进排气系统。在活塞上行的时候是无法对外输出的。
看起来双作用似乎更加节约空间和结构材料,但实际上并不这样。因为它必须保持活塞杆和气缸的平行,这导致结构异常庞大和复杂。所以蒸汽机时代过去之后动力装置上再也不使用这种机构了。
对于致动器上,双向作用可以在两个方向上施力,可以推也可以拉,这有现实的好处。比如现代的液压机上的主油缸,般都是双向的,同时回程活塞截面因为被活塞杆占据定面积,导致输出力比活塞顶部输出时小,这也带来定好处:回程速度大大加快。
气压传动中将压缩气体的压力能转换为机械能的气动执行元件。气缸有作往复直线运动的和作往复摆动的两类(见图)。作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。 ①单作用气缸:仅端有活塞杆,从活塞侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在个方向输出力,用弹簧复位。它的密封好,但行程短。 ④冲击气缸:这是种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。冲击气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。
SMC气缸作用
将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
编辑本段SMC气缸分类
直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
编辑本段SMC气缸结构
气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示: SMC气缸原理图 1)缸筒 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。 SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。 2)端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
SMC气缸*现货,SMC汽缸,SMC气缸/39529839/39529830:单荣兵
根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。 日本SMC标准气缸 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。 SMC 气缸所设缓冲装置种类很多,上述只是其中之,当然也可以在气动回路上采取措施,达到缓冲目的。 组合组合气缸般指气缸与液压缸相组合形成的气-液阻尼缸、气-液增压缸等。*,通常气缸采用的工作介质是压缩空气,其特点是动作快,但速度不易控制,当载荷变化较大时,容易产生“爬行”或“自走”现象;而液压缸采用的工作介质是通常认为不可压缩的液压油,其特点是动作不如气缸快,但速度易于控制,当载荷变化较大时,采用措施得当,般不会产生“爬行”和“自走”现象。把气缸与液压缸巧妙组合起来,取长补短,即成为气动系统中普遍采用的气-液阻尼缸。气-液阻尼缸工作原理见图42.2-5。实际是气缸与液压缸串联而成,两活塞固定在同活塞杆上。液压缸不用泵供油,只要充满油即可,其进出口间装有液压单向阀、节流阀及补油杯。当气缸右端供气时,气缸克服载荷带动液压缸活塞向左运动(气缸左端排气),此时液压缸左端排油,单向阀关闭,油只能通过节流阀流入液压缸右腔及油杯内,这时若将节流阀阀口开大,则液压缸左腔排油通畅,两活塞运动速度就快,反之,若将节流阀阀口关小,液压缸左腔排油受阻,两活塞运动速度会减慢。这样,调节节流阀开口大小,就能控制活塞的运动速度。可以看出,气液阻尼缸的输出力应是气缸中压缩空气产生的力(推力或拉力)与液压缸中油的阻尼力之差。
/39529839/39529830:单荣兵